УДК 536.413:537.31/.32:54-31:54.052:666.654

Мацукевич І.В.

Мацукевич І.В., Клиндюк А.І.

Білоруський державний технологічний університет вул. Свердлова, 13а, м. Мінськ, 220006, Республіка Білорусь

СИНТЕЗ І ТЕРМОЕЛЕКТРИЧНІ

ВЛАСТИВОСТІ ТВЕРДИХ РОЗЧИНІВ Са $_{3}$ Со $_{3.85}$ $M_{0.15}$ O $_{9+\delta}$ (M = V – Zn), ОТРИМАНИХ ЦИТРАТНИМ ГЕЛЬ–МЕТОДОМ

Клиндюк А.І.

Цитратним гель-методом синтезовано тверді розчини $Ca_3Co_{3.85}M_{0.15}$ $O_{9+\delta}$ (M = V - Zn), досліджено їхню структуру й мікроструктуру, термоЕРС, електропровідність і теплове розишрення. Вивчено процеси, що відбуваються при одержанні кераміки $Ca_3Co_4O_{9+\delta}$ цитратним гель-методом. Встановлено, що отримані матеріали є напівпровідниками р-типу. Проаналізовано вплив часткового заміщення катіонів кобальту катіонами 3 d-металів на фізико-хімічні й термоелектричні властивості кераміки $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$. Максимальні значення фактора потужності демонструють тверді розчини $Ca_3Co_{3.85}Fe_{0.15}O_{9+\delta}$ і $Ca_3Co_{3.85}Ni_{0.15}O_{9+\delta}$ – відповідно 153 і 152 мкВт/(м·K²) за 1100 К, що в 1.5 раза більше, ніж для незаміщеного кобальтиту кальцію $Ca_3Co_4O_{9+\delta}$

Ключові слова: шаруватий кобальтит кальцію, цитратний гель-метод, електропровідність, термоЕРС, теплове розширення, фактор потужності.

Citrate gel method was used to synthesize $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M=V-Zn) solid solutions, to investigate their structure and microstructure, thermoEMF, electric conductivity and thermal expansion. Processes occurring in the preparation of $Ca_3Co_4O_{9+\delta}$ ceramics by citrate gel method were studied. It was established that the resulting materials are p-type semiconductors. The influence of partial substitution of cobalt cations by 3d-metal cations on the physical-chemical and thermoelectric properties of $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ ceramics was analyzed. Maximum values of power factor are demonstrated by $Ca_3Co_{3.85}Fe_{0.15}O_{9+\delta}$ and $Ca_3Co_{3.85}Ni_{0.15}O_{9+\delta}$ solid solutions, namely 153 and $152\mu W/(mK^2)$ at 1100K, which is a factor of 1.5 greater than for unsubstituted calcium cobalitie $Ca_3Co_4O_{9+\delta}$

Key words: layered cobaltite calcium citrate gel method, electrical conductivity, thermoelectric power, thermal expansion, the power factor.

Вступ

Науково значимим й практично важливим завданням є розробка нових термоелектричних матеріалів, ефективних за підвищених температур і стійких у цих умовах до окислення атмосферним киснем. Такими властивостями володіє шаруватий кобальтит кальцію $Ca_3Co_4O_{9+\delta}$, що характеризується досить високими значеннями фактора потужності й термоелектричної добротності за високих температур [1, 2]. Функціональні характеристики кераміки на основі $Ca_3Co_4O_{9+\delta}$ можуть бути поліпшені за рахунок використання замість твердофазного «м'яких», низькотемпературних методів синтезу [3–6], а також за рахунок хімічної модифікації шаруватого кобальтита кальцію, зокрема з частковим заміщенням катіонів кобальту катіонами 3 *d*-металів [7–12].

У пропонованій роботі цитратним гель-методом отримано кераміку $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}(M-3d-Metan)$ і вивчено вплив часткового заміщення катіонів кобальту катіонами 3d – металів на кристалічну структуру, теплове розширення, електрофізичні й термоелектричні властивості фаз $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$. Показано, що термоелектричні властивості шаруватого кобальтиту кальцію поліпшуються із введенням 3d – металу, що заміщає кобальт, а максимальне значення фактору потужності досягає у випадку твердих розчинів $Ca_3Co_{3.85}Fe_{0.15}O_{9+\delta}$ і $Ca_3Co_{3.85}Ni_{0.15}O_{9+\delta}$ – 153 і 152 мкВт/(м·K²) відповідно за 1100 К.

Експерементальна частина

Для синтезу зразків $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M = V, Cr, Mn, Fe, Ni, Cu, Zn) готували розчини $Ca(NO_3)_2 \cdot 4H_2O$ (ч.д.а) ($C_1 = 0.6$ М), $Co(NO_3)_2 \cdot 6H_2O$ (ч.д.а.) ($C_2 = 0.8$ М), $Cr(NO_3)_3 \cdot 9H_2O$ (ч.д.а.), $Fe(NO_3)_3$ (х.ч.), $Ni(NO_3)_3 \cdot 6H_2O$ (ч.д.а.) (розчини нітратів останніх 3d-металів отримували розчиненням оксидів VO_2 (ч.), Mn_2O_3 (ч.), CuO (ч.), ZnO (ч.д.а.) в концентрованій азотній кислоті) ($C_3 = 0.8$ М) й $C_6H_8O_7$ (ч.) ($C_4 = 0.5$ М), які змішували у співвідношеннях (по молях компонентів) 3: 3.85: 0.15: 15. Отримані розчини упарювали при 343 К до утворення в'язкого фіолетового гелю, який висушували за 383-393 К на електроплитці до утворення карамелеподібної маси. Масу подрібнювали й додатково висушували в муфельній печі упродовж 2 год за 423 К з наступним перетиранням. Утворений брудно-рожевий порошок відпалювали упродовж 4 год при 873 К.

Ідентифікацію зразків і визначення параметрів їх кристалічної структури проводили за допомогою рентгенофазового аналізу (РФА) (рентгенівський дифрактометр Bruker D8 XRD Advance, Cuk_{α} -випромінювання, діапазон зйомки: 5–100 2 Θ із кроком 0.05, умови зйомки: 40 кВ/40 мА) і ІЧ спектроскопії поглинання (Фур'є-спектрометр Nexus фірми Thermonicolet, інтервал частот 300–1500 см⁻¹). Індекс кисневої нестехіометрії (δ) в $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M = V - Zn) визначали за допомогою йодометричного титрування. Удавану густину зразків ($\rho_{3ксп}$) знаходили за їхньою масою й геометричними розмірами.

Термічний аналіз порошку прекурсору під час синтезу $Ca_3Co_4O_{9+\delta}$ цитратним гель-методом після висушування за 403 К здійснювали за допомогою системи термічного аналізу Mettler Toledo (Швейцарія) на повітрі в інтервалі температур 298–1173 К зі швидкістю нагрівання 10 К · хв⁻¹.

Мікроструктуру спеченої кераміки досліджували за допомогою скануючого електронного мікроскопа JSM-5610 LV із системою хімічного аналізу EDX JED-2201 JEOL. Теплове розширення, електропровідність і термоЕРС спечених керамічних зразків досліджували на повітрі в інтервалі температур 300–1100 К за методиками, описаними в [13–15]. Значення фактора потужності (*P*) розраховували за формулою

$$P = S^2 \cdot \sigma \,, \tag{1}$$

де S – термоЕРС, σ – електропровідність.

Величини енергії активації електропровідності (*EA*) і коефіцієнта лінійного теплового розширення (α) зразків знаходили з лінійних ділянок залежностей $ln(\sigma \cdot T) = f(1/T)$ і $\Delta l/l_0 = f(T)$ відповідно.

Результати і їх обговорення

Розкладання прекурсору $Ca_3Co_4O_{9+\delta}$, отриманого цитратним гель-методом, відбувається складним чином: термогравіметричний крива (ТГ) у цьому випадку складається з восьми ділянок

(рис. 1*a*). На перших двох стадіях процесу втрата маси становить $\approx 2,72\%$ (298 < T < 373 K) і $\approx 4,83\%$ (373 < T < 539 K), що відповідає виділенню зі зразка відповідно вільної й зв'язаної води [4]. Зменшення маси порошку на третій –шостій стадіях ($\approx 11,95\%$ за 539 < T < 576 K, $\approx 6,03\%$ за 576 < T < 630 K, $\approx 2,92\%$ за 630 < T < 688 K і $\approx 3,79\%$ за 688 < T < 851 K), що супроводжується вираженими екзотермічними ефектами з екстремумами за 588, 599 і 687 K, відбувається внаслідок східчастого окислення цитратів кальцію ($Ca_3[C_3H_4(OH)(COO)_3]_2$) і кобальту ($C_3[C_3H_4(OH)(COO)_3]_2$) до $CaCo_3$ і Co_3O_4 [4, 5] за реакціями

$$Ca_{3} \Big[C_{3}H_{4} \big(OH \big) \big(COO \big)_{3} \Big]_{2} + 9 O_{2} + 3CaCO_{3} + 9CO_{2} \uparrow + 5H_{2}O \uparrow,$$
(2)

$$Co_{3} \Big[C_{3}H_{4} \big(OH \big) \big(COO \big)_{3} \Big]_{2} + 9.5 O_{2} \uparrow \rightarrow Co_{3} O_{4} + 12CO_{2} \uparrow + 5H_{2}O \uparrow$$
(3)

атмосферним киснем, а також киснем, що виділяється із розкладанням нітратів кальцію й кобальту:

$$Ca(NO_3)_2 \rightarrow CaO + 2NO_2 \uparrow + 1/2O_2 \uparrow, \tag{4}$$

$$3Co(NO_3)_2 \to Co_3O_4 + 6NO_2 \uparrow + O_2 \uparrow.$$
⁽⁵⁾

Втрата маси на сьомій стадії ($\approx 10,70\%$ за 851 < T < 1003 К) супроводжується розмитим ендотермічним ефектом з екстремумом за 997 К й відповідає розкладанню карбонату кальцію з утворенням продукту реакції – $Ca_3Co_4O_{9+\delta}$ [4, 5]:

$$3CaCo_{3} + 4/3Co_{3}O_{4} + (1/3 + \delta/2)O_{2} \rightarrow Ca_{3}Co_{4}O_{9+\delta} + 3CO_{2}\uparrow.$$
(6)

Зменшення маси на восьмій стадії невелике ($\approx 0,39\%$ за 1003 < T < 1197 К) і відповідає, мабуть, завершенню реакції утворення $Ca_3Co_4O_{9+\delta}$.

Рис. 1. Результати термічного аналізу прекурсору $Ca_3Co_4O_{9+\delta}(a)$ і мікрофотографія поверхні відколу (перпендикулярно осі пресування) кераміки $Ca_3Co_4O_{9+\delta}(b)$, отриманої цитратним гель-методом.

Кристаліти $Ca_3Co_4O_{9+\delta}$ мали форму пластин із середніми розмірами 2.5×1.7×0.5 мкм; при цьому пластини широкою стороною були орієнтовані, головним чином, перпендикулярно осі пресування (рис. 16), що вказує на часткове текстурування отриманої кераміки.

Після заключної стадії синтезу зразки кобальтиту кальцію $Ca_3Co_4O_{9+\delta}$ і твердих розчинів $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M = V - Zn) були однофазними, у межах похибки РФА, і мали структуру шаруватого кобальтиту кальцію [16] (рис. 2, криві 1–4). Значення параметрів кристалічної структури фаз $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ наведено в табл. 1. Величини параметрів елементарного гнізда $Ca_3Co_4O_{9+\delta}$ у межах похибки, що заявляється, збігаються з результатами [16], згідно з якими для шаруватого кобальтиту кальцію a = 0,48376(7); $b_1 = 0,45565(6)$; $b_2 = 0,28189(4)$; c = 1,0833(1) нм; $\beta = 98,06(1)^{\circ}$.

Як видно із показаних у табл. 1 даних, об'єм елементарного гнізда й параметр нерозмірності (b_1/b_2) твердих розчинів $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ зменшуються від M = V до M = Zn, що обумовлено

головним чином зменшенням параметра b_1 їх кристалічної структури.

IЧ спектри поглинання порошків $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M = V – Zn) містили дві виражені смуги поглинання з екстремумами за $v_1 = 563-573$ см⁻¹ $v_2 = 726-733$ см⁻¹ (рис. 2, криві 5–9), що відповідають, згідно [17], валентним коливанням зв'язків Co(M)–O (v_1) і Ca–O (v_2) у структурі цих оксидів.

Рис. 2. Порошкові дифрактограми (1 - 4)(Сик_а-випромінювання) і ІЧ-спектри поглинання (5 - 8) кобальтиту кальцію Са₃Со₄O_{9+ δ} (1, 5) і твердих розчинів на його основі Са₃Со_{3.85}M_{0.15}O_{9+ δ}: M = Ni (2, 6), Fe (3, 7), Mn (4, 8).

<u>Таблиця 1</u>

Значення параметрів кристалічної структури (a, b₁, b₂, c, β, V, b₁/b₂) і індексу кисневої нестехіометрії (δ) шаруватих кобальтитів Ca₃Co_{3.85}M_{0.15}O_{9+δ}

М	а, нм	b_1 , нм	<i>b</i> ₂ , нм	С, НМ	β, °	<i>V</i> , нм ³	b_1/b_2	δ
V	0.4839(7)	0.4591(7)	0.2837(9)	1.085(1)	98.23(6)	0.2386(9)	1.618	0.37
Cr	0.4838(7)	0.4595(8)	0.2841(9)	1.085(1)	98.20(7)	0.2387(9)	1.617	0.42
Mn	0.4830(6)	0.4561(7)	0.2819(9)	1.090(1)	98.26(8)	0.2377(9)	1.618	0.44
Fe	0.4868(5)	0.4557(5)	0.2843(6)	1.089(1)	100.3(1)	0.2378(6)	1.603	0.35
Со	0.4830(7)	0.4562(8)	0.2812(6)	1.085(1)	98.28(8)	0.2365(9)	1.622	0.35
Ni	0.4827(5)	0.4561(6)	0.2839(9)	1.084(1)	98.08(7)	0.2363(9)	1.607	0.35
Си	0.4838(7)	0.4540(8)	0.2823(9)	1.081(1)	98.16(8)	0.2349(9)	1.608	0.55
Zn	0.4832(6)	0.4544(7)	0.2824(9)	1.083(1)	97.97(7)	0.2354(9)	1.609	0.48

Смуга v₁ твердих розчинів $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ у порівнянні з незаміщеною фазою $Ca_3Co_4O_{9+\delta}$ зміщується у бік більших хвильових чисел, що вказує на збільшення енергії кобальт-кисневих взаємодій у структурі шаруватого кобальтиту кальцію при частковому заміщенні катіонів кобальту катіонами інших 3 *d*-металів.

Щільність твердих розчинів $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ змінювалася в межах 2.64–3.16 г/см³ (табл. 2) і була трохи нижчою, ніж для базового кобальтиту кальцію (3.18 г/см³), із чого можна зробити висновок, що часткове заміщення кобальту іншими 3 *d*-металами погіршує спікання кераміки на основі шаруватого кобальтиту кальцію.

Температурні залежності відносного видовження всіх досліджених зразків в інтервалі температур 300–1100 К були лінійними, із чого випливає, що в цьому інтервалі температур фази $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ не мають структурних фазових переходів. Величина коефіцієнта лінійного теплового розпирення (КЛТР) оксидів $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M=V-Zn) змінювалася в межах (1.20–1.31)·10⁻⁵ K⁻¹ (табл. 2) і для всіх твердих розчинів (за винятком фази $Ca_3Co_{3.85}N_{0.15}O_{9+\delta}$) була нижчою, ніж для базового кобальтиту кальцію. Результати дилатометрії добре узгоджуються з даними ІЧ-спектроскопії поглинання, згідно з якими часткове заміщення кобальту іншими 3 *d*-металами

збільшує енергію міжіонної взаємодії в структурі фази Са₃Со₄О₉₊₆.

Усі досліджені в роботі матеріали були напівпровідниками р-типу (S > 0, рис. 3а, б), характер провідності яких в інтервалі температур 800–1000 К змінювався від напівпровідникового до металевого (рис. 3а), що обумовлено частковим відновленням зразків внаслідок виділення частини кисню з їхнього об'єму в навколишнє середовище. Значення електропровідності твердих розчинів $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M = V - Zn) були у цілому нижчі, а величина енергії активації електропровідності – вища, ніж для незаміщеної фази (табл. 2, рис. 3а).

Рис. 3. Температурні залежності електропровідності σ (а), термоЕРС S (б) і фактора потужності P (в) кераміки Ca₃Co_{3.85}M_{0.15}O_{9+ δ} (M = V, Fe, Co, Ni, Cu).

ТермоЕРС досліджених кобальтитів зростала зі збільшенням температури (рис. 36) і для твердих розчинів $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M = V – Zn) була вищою, ніж для кобальтиту кальцію $Ca_3Co_4O_{9+\delta}$, при цьому найбільші значення термоЕРС спостерігалися для твердих розчинів $Ca_3Co_{3.85}Mn_{0.15}O_{9+\delta}$ і $Ca_3Co_{3.85}Zn_{0.15}O_{9+\delta}$ (табл. 2).

<u>Таблиця 2</u>

Значення удаваної густини (ρ), коефіцієнта лінійного термічного розширення (α), удаваної енергії активації (E_A), електропровідності (σ₁₁₀₀), коефіцієнта термо-ЕРС (S₁₁₀₀) і фактора потужності (P₁₁₀₀) кераміки Ca₃Co₃₈₅M₀₁₅O_{9+δ}

М	р, г/см ³	$\alpha \cdot 10^5, \text{ K}^{-1}$	E_A , eB	σ ₁₁₀₀ , См/см	<i>S</i> ₁₁₀₀ , мкВ/К	P_{1100} , мкВт/(м·К ²)				
V	3.02	1.22	0.075	21.7	229	114				
Cr	2.86	1.25	0.099	13.7	242	79.8				
Mn	2.64	1.21	0.075	7.73	278	59.8				
Fe	3.09	1.20	0.068	23.1	258	153				
Со	3.18	1.28	0.065	23.8	206	100				
Ni	3.12	1.31	0.073	24.3	250	152				

Значення фактора потужності оксидної кераміки збільшувалися з ростом температури й для твердих розчинів $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ значно вищі, ніж для незаміщеної фази $Ca_3Co_4O_{9+\delta}$ (рис. 3в), при цьому найбільші значення Р демонстрували тверді розчини $Ca_3Co_{3.85}Fe_{0.15}O_{9+\delta}$ і $Ca_3Co_{3.85}Ni_{0.15}O_{9+\delta} - 153$ і 152 мкВт/(м·K²) відповідно за 1100 К, що обумовлено головним чином високими значеннями термоЕРС цих оксидів.

Висновки

Цитратним гель-методом синтезовано оксидну кераміку $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M = V - Zn), вивчено її кристалічну структуру й мікроструктуру, на повітрі за температур, вищих від кімнатної, досліджено її теплове розширення, електрофізичні й термоелектричні властивості. Вивчено процеси, що відбуваються з одержанням кобальтиту кальцію цитратним гель-методом. Розраховано значення коефіцієнта лінійного теплового розширення зразків, які склали (1.20–1.31)·10⁻⁵ K⁻¹. Встановлено, що тверді розчини $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ є напівпровідниками *p*-типу, провідність яких нижча, а термоЕРС вища, ніж у базового кобальтиту кальцію $Ca_3Co_4O_{9+\delta}$. Найбільш високі значення фактора потужності серед досліджених складів мають фази $Ca_3Co_{3.85}Fe_{0.15}O_{9+\delta}$ и $Ca_3Co_{3.85}Ni_{0.15}O_{9+\delta}$ – відповідно 153 мкВт/(м·K²) і 152 мкВт/(м·K²) за температури 1100 К.

Подяка. Автори висловлюють подяку Кононовичу В.М. за запис порошкових дифрактограм, Баранниковій Т.І. за запис ІЧ спектрів поглинання й Лугіну В.Г. за проведення електронномікроскопічних досліджень. Роботу виконано в рамках ДПНД «Функціональні й машинобудівні матеріали й технології, наноматеріали й нанотехнології в сучасній техніці», підпрограма «Кристалічні й молекулярні структури» (завдання 1.02).

Література

- 1. Oxide Thermoelectrics. Research Signpost, Ed. by K.Koumoto, I.Terasak, and N.Murayama (Trivandrum, India, 2002), 255 p.
- 2. D.Kenfaui, D.Chateigner, M.Gomina and J.G.Noudem, Texture, Mechanical and Thermoelectric Properties of Ca₃Co₄O₉ Ceramics, J. Alloys & Comp. **490**, 472 (2010).
- 3. Y.Song, Q.Sun, L.Zhao, F.Wang, and Zh.Jiang, Synthesis and Thermoelectric Power Factor of $(Ca_{0.95}Bi_{0.05})_3Co_4O_9 / Ag$ Composites, Mater. Chem. and Phys. **113**, 645 (2009).
- 4. Y.F.Zhang, J.X.Zhang, Q.M.Lu, and Q.Y.Zhang, Synthesis and Characterization of $Ca_3Co_4O_{9+\delta}$ Nanoparticles by Citrate Sol-Gel Method, Mater. Lett. **60**, 2443 (2006).
- 5. N.Lerssongkram, S.Pinitsoontorn, and N.Keawprak, Synthesis and Thermoelectric Properties of *Ca*₃*Co*₄*O*₉ Prepared by Sol-Gel Method Using PVA, KKU Research J. **16**(1), 11 (2011).
- 6. T.Yin, D.Lui, Y.Ou, F.Ma, S.Xie, J.-F.Li, and J.Li, Nanocrystalline Thermoelectric *Ca*₃*Co*₄*O*₉ Ceramics by Sol-Gel Based Electrospinning and Spark Plasma Sintering, J. Phys. Chem. C **114**, 10061 (2010).
- Y.Wang, Y.Sui, X.Wang, W.Su and X.Lui, Enhanced High-Temperature Thermoelectric Characteristics of Transition Metals Doped Ca₃Co₄O₉₊₆, J. Appl. Phys. **107**, 033708 (2010).
- 8. Y.Wang, Y.Sui, P.Ren, L.Wang, X.Wang, W.Su, and H.Fan, Strongly Correlated Properties and Enhanced Thermoelectric Response in $Ca_3Co_{4-x}M_xO_{9+\delta}$ (M = Fe, Mn, and Cu), Chem. Mater **22**, 1155 (2010).
- Ch.-J. Liu, L.-Ch. Huang, and J.-Sh. Wang, Improvement of the Thermoelectric Characteristics of Fe-doped Misfit-Layered Ca₃Co_{4-x}Fe_xO_{9+δ} (x = 0, 0.05, 0.1, and 0.2), Appl. Phys. Lett. **89**, 204102 (2006).
- 10. Ch.-J. Liu, J.-L. Chen, L.-Ch. Huang, Zh.-R. Lin, and Ch.-L Chang, X-ray Absorption Spectroscopy Studies of Fe-doped Misfit-Layered Ca₃Co_{4-x}Fe_xO_{9+ δ} (x = 0, 0.05, 0.1, and 0.2), J. Appl. Phys. **102**, 014908 (2007).
- 11. L.Xu, F.Li, and Y.Wang, High-Temperature Transport and Thermoelectric Properties of $Ca_3Co_{4-x}Ti_xO_{9+\delta}$, J. Alloys & Comp. **501**, 115 (2010).
- 12. T.Morimura, M.Hasaka, Sh.-I.Kondo, H.Nasashima, and H.Maeda, Microstructures and Thermoelectric Properties of Sintered *Ca*₃*Co*₄*O*₉-based oxide, J. Electr. Mat. **41**, 1217 (2012).
- Клындюк А.И. Свойства фаз RBaCuFeO_{5+δ} (R Y, La, Pr, Nd, Sm-Lu) / А.И. Клындюк, Е.А. Чижова // Неорган. матер. 2006. Т. 42. № 5. С. 611.
- 14. Клындюк А.И. Термоэлектрические свойства некоторых перовскитных оксидов / А.И. Клындюк, Е.А. Чижова [и.д.р.] // Термоэлектричество. – 2009. – № 3. – С. 76–84
- 15. A.K.Tripathi, H.B.Lal, Electrical Transport in Rare-Earth Orthochromites, Mater. Res. Bull. 15(2), 233 (1980).
- A.C.Masset, C.Michel, A.Maignan, M.Hervieu, O.Toulemonde, F.Studer, B.Raveau, J.Hejtmanek, Misfit-Layered Cobaltite with an Anisotropic Giant Magnetoresistance: *Ca*₃*Co*₄*O*₉, Phys. Rev. B. **62**(1), 166 (2000).
- 17. Y.Zhang, J.Zhang, Rapid Reactive Synthesis and Sintering of Textured *Ca*₃*Co*₄*O*₉ Ceramics by Spark Plasma Sintering, J. Mater. Proc. Technol. **208**, 70 (2008).

Надійшла до редакції 06.08.2012