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CONDUCTIVITY USING SHAPE-FORMING 
ELEMENT OPTIMIZATION 

Within the four different model approaches the lattice conductivity of Bi2Te3 was calculated for a 
physical model of shape-forming element of thermoelectric material structure, namely two 
hemispheres contacting in a circle with regard to phonon scattering on the contact boundary as 
applied to Bi2Te3. The calculated data is briefly discussed from the general physics and applied 
standpoints of thermoelectric material science. 
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Introduction 
The most widely used thermoelectric materials nowadays are Bi-Te based alloys (Bi2Te3 

compounds). They are prepared by different methods, namely zone recrystallization, Czochralski 
pulling and oriented crystallization process. These three methods yield thermoelectric figure of merit Z 
in the range of (2.8 ÷ 3.1)·10–3 K–1. Such Z values are achieved with heat flux and electric current 
orientations in the directions normal to Bi2Te3 trigonal axis. Whereas in the direction parallel to 
trigonal axis the Z values are essentially lower. This situation is due to the fact that Bi2Te3 is uniaxial 
anisotropic crystal whose conductivity values σ11 in the direction normal to trigonal axis are 
σ11 = (800 ÷ 1000) Ω–1сm–1 and are considerably higher than σ33 – conductivity along trigonal axis. 
The values of thermal conductivity χl are also anisotropic and make χ11 = 1.45 W/m·K and 
χ33 = 0.58 W/m·K. At the same time, the thermoelectric coefficients α11 and α33 are little different and 
make 210 ÷ 220 μV/K. Therefore, Z11 = (2.4 ÷ 2.5)·10–3 K–1. For this reason, practical use is found by 
materials oriented normal to trigonal axis. 

Thermoelectric instruments and devices are also manufactured with the use of Bi2Te3 based 
materials prepared by extrusion method whose thermoelectric figure of merit is about 3·10–3 K–1, that 
is, rather close to that of single crystal materials. 

It should be noted that the macroscopic structure of extruded materials is a combination of 
arbitrarily oriented powder particles of size (40 ÷ 80) μm whole properties are close to those of 
oriented crystalline thermoelectric materials. For extruded thermoelectric materials 11 33efσ = σ σ  and 

11 33efχ = χ χ . Therefore, thermoelectric figure of merit of extruded material must be lower than that 

of single crystal. Taking into account that electric conductivity anisotropy of Bi2Te3 depending on 
conductivity type is 2.7 for p-type and 4 ÷ 6 for n-type, and thermal conductivity anisotropy is 2 ÷ 3, 
the figure of merit can be reduced by a factor of 2  – 3 , that is, by 30 – 40 %. However, in the best 
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case for p-type material it can even grow by about 5 %. In practice, no figure of merit reduction is 
observed. Hence, there must be a mechanism leading to thermoelectric figure of merit increase in 
going from single crystal to extruded material structure due to a change in the character of phonon and 
current carrier scattering. Research on this mechanism would provide for helpful information as to the 
ways of radical improvement of thermoelectric figure of merit of said materials.  

The physical concept of thermoelectric figure of merit improvement in extruded material is that 
thermal conductivity in going from a bulk to porous or fine-dispersed structure is reduced considerably 
and the electric conductivity – essentially weaker. 

The authors of [1] who were among the first who paid attention to this fact, made evaluation 
calculations of the electric and thermal conductivity of model structure of thermoelectric material rods 
divided by vacuum gaps. From the evaluation formulae it follows that if the characteristic dimensions of the 
rods are small, then the electric and thermal conductivity of the structure is proportional to these dimensions. 
However, with the large rod dimensions said characteristics tend to parameters of the bulk material. 
Moreover, in the estimation of thermoelectric figure of merit in this work it was considered that the lattice 
conductivity of such structure is zero. The electric and thermal conductivity of the structure caused by free 
charge carriers is essentially dependent on the coefficient of electrons passage through the vacuum gap 
which does not affect, however, the thermoelectric figure of merit. Said approach did not yield quantitative 
estimates of rod dimensions and gaps between them that are optimal in terms of thermoelectric figure of 
merit. In [2] it is shown that in going from single-crystal to fine-dispersed germanium with the average grain 
radius 2.0 ÷ 2.5 μm (of which samples with porosity 70 % were made), the ratio of electric conductivity to 
thermal conductivity increased by a factor of 100 as compared to single crystal, and thermoelectric figure of 
merit – only by a factor of 4 – 6, which, in the authors’ opinion is attributable to incomplete restoration of 
negative thermoEMF after annealing. In [3], formulae were obtained for the determination of the electric and 
thermal conductivity of a dispersed medium comprising spherical particles of thermoelectric material, but 
electron and phonon scattering on the boundaries of spheres and contacts between them was not considered. 

Paper [4] is a theoretical study of the thermal conductivity of the bulk nanostructured  bismuth 
telluride samples which, nevertheless, does not take into account that phonon scattering on the boundaries of 
individual nanoparticles occurs at all phonon frequencies, rather than at “selected” ones. 

In patent [5] for the efficient phonon drag it is proposed to use small-area contacts between 
relatively large parts of thermoelectric material. In so doing, said contacts must have dimensions of the 
order of several nanometers. 

There were also considered the possibilities of creating such thermoelectric materials that would be 
“phonon glasses”, remaining in this case “electron crystals” due to the fact that lattice thermal conductivity 
with a large concentration of structural defects is reduced more than the electric conductivity owing to the 
peculiarity of electron density of states [6]. The researchers’ attention is also focused on the whiskers of 
organic conductors of the type TTF-TCNQ and the like [7, 8]. It is considered that a high degeneracy level 
of free charge carriers gas is attainable in these crystals, owing to which lattice thermal conductivity cannot 
affect considerably the thermoelectric figure of merit of material, and the latter can be regarded as the 
integral characteristic of free charge carriers subsystem in material [9], that is, the lower limit of thermal 
conductivity in these crystals has already been achieved, and the only opportunity of thermoelectric figure of 
merit improvement is the Lorentz number increase.  

In the manufacture of thermoelectric modules of conventional material powders by hot pressing 
or extrusion methods, a question arises as to the optimal in terms of thermoelectric figure of merit size 
of powder grains and contacts between them. According to [10], particles of source powder can be 
adequately considered spherical. In the course of pressing they can acquire the shape of hemispheres 



P.V. Gorsky, V.P. Mikhalchenko 
Reduction of thermoelectric material lattice thermal conductivity using shape-forming element optimization 

 Journal of Thermoelectricity №1, 2013 ISSN 1607-8829 20

with a circular contact between them. The shape-forming element of such structure can be 
approximated by two equal-radius hemispheres contacting in a circle. Research on the generalized 
conductivities of such shape-forming element should be a preliminary to a research on the above 
mentioned characteristics of structure as a whole. It is this that motivates the relevance of the problem 
solved in this work. 

Our purpose in this work is to calculate changes in the lattice thermal conductivity of shape-
forming element of extruded thermoelectric material structure due to phonon scattering on the 
boundaries of contact between two osculating hemispheres, and estimate the radius of contact 
necessary for 30 – 40 % reduction of lattice thermal conductivity of shape-forming element. 

Consideration of the problem of phonon scattering on the boundaries  
of shape-forming element in the approximation of constant relaxation time  

As will be shown below, for consideration of this problem it is reasonable to involve a model of 
unit sphere placed in a heat flux. This will enable a more transparent physical interpretation of 
quantitative estimates. With a constant phonon relaxation time, the following expression for the 
resulting phonon mean free path in a limited sample is valid [11]: 

 .p
tp

p

l L
l

l L
=

+
 (1)  

In this formula, lp is phonon mean free path in material caused by all scattering mechanisms, 
except for the boundaries of contact spot or sample as a whole; L is effective phonon mean free path due 
to sample boundaries. As long as the effective mean free paths in a sample due to the boundaries are not 
equal for all the phonons, the thermal conductivity of material at boundary scattering is: 
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In this formula, ρ is material density, v is sound velocity in it, cV is specific heat of material with 
a constant volume. The angular brackets mean averaging of respective expression over possible 
effective lengths L of phonon mean free path in a sample, including the shortest ones, because theirs is 
the major contribution to general possibility of phonon scattering [11]. In the case of a circular contact 
which is small as compared to hemisphere diameters, it can be considered that phonon drag takes 
place only in its vicinity. Moreover, all points of contact boundary are equivalent by virtue of its 
symmetry. Hence, formula (2) implies the following ratio between thermal conductivity of shape-
forming element and that of the bulk sample: 
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∫ ∫ . (3)  

In this formula, k = r / lp, lp is phonon mean free path. As it must be, at k = 0 formula (3) gives 
zero, and at k → ∞ – thermal conductivity of a bulk sample. The results of these calculations are 
shown in Fig. 1. 

From the results of calculations it follows that for thermal conductivity reduction, for instance, 
by 30 – 40 %, the contact radius must not exceed (1.3 ÷ 2.5) lp. Taking into account that according to 
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[12] the phonon mean free path corresponding to a greater thermal conductivity value is 4.16 nm, we 
obtain that contact radius must not exceed (5 ÷ 10) nm. The mean free path corresponding to the lower 
thermal conductivity value is, however, 1.4 nm. Therefore, for the same reduction of the lower thermal 
conductivity value the contact radius must not exceed (1.8 ÷ 3.3) nm. By analogy, this problem can be 
solved for a unit sphere. The respective formula is given by: 

 
1 2 2

2

2
0 0

1 2
1.5 d d .

1 1 2
ef
l l

k x xy
x y x

k x xy

π + −
χ χ =

+ + −
∫ ∫  (4)  

 

Fig. 1. Dependence of thermal conductivity of a system of two hemispheres  
contacting in a circle on the contact radius. 

Double integral in this formula is caused by averaging the expression for thermal conductivity 
over the effective phonon mean free paths inside the sphere. In this formula, k = R / lp, where R is 
sphere radius. The corresponding plot is presented in Fig. 2 

 

Fig. 2. Sphere radius dependence of a relative decrease  
in lattice thermal conductivity due to phonon drag size effect.  

It is seen that for the above discussed thermal conductivity reduction the sphere radius should 
not exceed (1.2 ÷ 2.2) lp. For a greater thermal conductivity value it makes (5.1 ÷ 9.3) nm, and for the 
lower – (1.6 ÷ 2.9) nm. 
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Problem consideration with regard to frequency dependence  
of phonon relaxation time 

All previous calculations have been valid in the approximation of constant phonon relaxation 
time. Next, we consider the problem with regard to frequency dependence of phonon relaxation time. 

If we normalize phonon relaxation time to the time of normal processes, then, taking into 
account [11], components of thermal conductivity tensor of the bulk sample of such layered material 
as bismuth telluride can be written as: 

 
( )
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( ) ( ) ( )
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∫  (5)  

In these formulae, χl is lattice thermal conductivity; M is average atom mass in bismuth telluride;  
v is sound velocity in it; kB is the Boltzmann constant; γ is the Gruneisen parameter; TD is the Debye 
temperature of material; θ = T / TD, Ql(x) and Qt(x) are frequency polynomials introduced by one of the 
authors (P.V. Gorsky) that are to a power not higher than the fourth and caused by scattering 
mechanisms for the longitudinal and transverse phonons, indexes ⊥ and || refer to thermal conductivity 
and sound velocity normal and parallel to the layers.  

At room temperatures and higher the thermal conductivity of thermoelectric material is mainly 
determined by Umklapp processes (U-processes). Therefore, polynomials Ql(x) and Qt(x) are 
determined as: 

 ( ) ( )||, ||, ||, .l tQ x Q x x⊥ ⊥ ⊥= = μ  (6) 

Coefficient μ in the analytical form was calculated by Leibfried and Shleman [11] for a cubic 
lattice. However, according to experimental data [11], the value μ is not universal. Therefore, we will 
“retrieve” μ|| and μ⊥ coefficients from the real values of components of thermal conductivity tensor of 
bismuth telluride [12], on condition of their coincidence with the theoretical values (5) and (6). At 
χl⊥ = 0.58 W/m·K, χl|| = 1.45 W/m·K, M = 158.8 a.m.u., a⊥ = 3⋅10–9 m, v⊥ = 1867 m/s, a|| = 7⋅10–10 m, 
v|| = 2952 m/s, TD = 155 K and T = 300 K we obtain μ|| = 0.131, μ⊥ = 6.657·10–4. 

Based on these coefficients, it is easy to calculate a relative reduction of thermal conductivity 
due to scattering on the boundaries of circular contact and sphere. By analogy with formula (3) in the 
case of a circular contact: 
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In so doing, 
42
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The afore-mentioned figures of thermal conductivity reduction for its greater value are obtained 
at k* = 17.37 ÷ 33.02. With the above defined problem parameters we get r|| = (3.5 ÷ 6.7)·10–9 m. The 
same figures of thermal conductivity reduction for its lower value are obtained at k* = 3419 ÷ 6498. 
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Therefore, r⊥ = (0.6 ÷ 1.2)·10–9 m. Such radii of contacts between particles of diameter 60 ÷ 80 μm are 
hardly feasible.  

In the case of a sphere, by analogy with formula (4) we have:  
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where 
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Hence, in case of a sphere, to obtain the above reduction of greater thermal conductivity value, 
there must be k* = 15.57 ÷ 29.07, whence R|| = (3.2 ÷ 5.9)·10–9 m. To obtain the same reduction of 
lower thermal conductivity value, there must be k* = 3420 ÷ 6500, whence R⊥ = (0.6 ÷ 1.2)·10–9 m. 
Such particle dimensions are realizable only in nanostructured thermoelectric materials. Thus, the 
approach that takes into account only U-processes, cannot explain yet a small change in thermoelectric 
figure of merit in going from a single crystal to extruded thermoelectric material.  

Therefore, it is worthwhile to consider phonon scattering on the boundaries of a circular contact 
and sphere with regard to not only U-processes, but normal processes as well. For this purpose, 
frequency polynomials Ql(x) and Qt(x) may be written as follows: 

 ( ) 4
||, ||, ,lQ x x x⊥ ⊥= + μ  (9) 

 ( ) ( )3
||, ||, 3.125 .tQ x x⊥ ⊥= μ + θ  (10)  

Hence we get μ|| = 4.142⋅10–5, μ⊥ = 5.917⋅10–12. In this case, to obtain the above reduction of 
greater thermal conductivity value with phonon scattering on the boundaries of a circular contact, 
there must be k* = (1.52 ÷ 4.37)·105. Thus contact radius r|| = 31 ÷ 89 μm. To obtain the same 
reduction of lower thermal conductivity value, there must be k* = (1.839 ÷ 5.454)·1014, whence 
r⊥ = 32÷97 m. Quite similarly, in the case of phonon scattering on the boundaries of a sphere, to obtain 
the above reduction of greater thermal conductivity value, there must be k* = (1.37 ÷ 3.90)·105, 
whence R|| = 28 ÷ 80 μm. For the same reduction of lower thermal conductivity value, there must be 
k* = (1.66 ÷ 4.88)·1014, whence R⊥ = 29 ÷ 87 m. 

From the absurd, on the face of it, results for r⊥ and R⊥ parameters it follows that thermal 
conductivity anisotropy of macroscopic (e.g. meter long) samples cut from Bi2Te3 single crystal must 
be essentially dependent on their size, which is not the case. So, such an approach needs to be 
modified. Its main disadvantage introducing an excessive error lies in a forced replacement of real 
crystal lattice of material by a simple cubic lattice with one atom in the unit cell. However, in this case 
it is clear that neither a|| nor a⊥ can serve as cube edges, since M / a||

3and M / a⊥3quantities yield 
evidently understated material density values.  

In conclusion, we consider an approach based on the substitution of a real Bi2Te3 crystal lattice 
by a simple cubic lattice of the same density. According to this approach, the value of dimensionless 
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parameter ∗
⊥||,k  for the case of a circular contact should be redefined as: 
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and for the case of а sphere as: 
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As to formula (5), it must be re-written as:  
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Just as before, with regard to formulae (9) and (10), we obtain μ|| = 0.022, μ⊥ = 2.177⋅10–3. 
According to this approach, for the reduction of either thermal conductivity values by 30 – 40 % in the case 
of phonon scattering on the circular contact boundaries, k||

* must be 69.6 ÷ 167.7 and k⊥ – 1008 ÷ 2691. 
Therefore, contact radius must be 0.4 ÷ 1.1 μm. In the case of phonon scattering on the sphere boundaries, 
k||

* must be 62.5 ÷ 149.1 and k⊥ – 908 ÷ 2400. Therefore, the sphere radius is 0.35 ÷ 1 μm.  
Contacts of said dimensions can occur between particles of diameter 40 ÷ 80 μm at extrusion, 

which can account for the absence of a considerable decrease in thermoelectric figure of merit in going 
from a single crystal to extruded material.  

Conclusions and recommendations 
1. Based on the model of a shape-forming element of thermoelectric material structure in the form of 

two hemispheres contacting in a circle, it is shown that one of possible mechanisms of 
thermoelectric material lattice conductivity reduction in going from a single crystal to extruded 
material can be additional phonon scattering on the boundaries of contacts or spherical particles 
themselves.  

2. In the approximation of constant phonon relaxation time it is shown that for the reduction of lattice 
thermal conductivity of a shape-forming element by 30 – 40 % as compared to that of the bulk 
material the radius of contact between the particles should not exceed 1.3 ÷ 2.5 of the mean free 
path of phonon in material. With the use of a drag on the boundaries of spherical particles 
themselves, their radius should not exceed 1.2 ÷ 2.2 of the mean free path of phonon in material. 

3. With a substitution of a real crystal lattice of bismuth telluride by a model simple cubic lattice with 
unchanged material density and account of both U- and normal processes, the above discussed 
reduction of both components of thermal conductivity tensor is obtained with contact or particle 
radii within 0.3 ÷ 1 μm. As long as such contacts may be created between particles in the process 
of extrusion, it is exactly phonon scattering on their boundaries that can account for a slight change 
in thermoelectric figure of merit in going from a single crystal to extruded material.  

The authors express gratitude to academician L.I. Anatychuk for the statement of the problem 
and important critical remarks. 
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